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Probabilistic Numerics v.s.
Numerical Gaussian Processes

Probabilistic numerics aim to capitalize on the recent developments in
probabilistic machine learning to revisit classical methods in
numerical analysis and mathematical physics from a statistical
inference point of view.

This is exciting. However, it would be even more exciting if we could
do the exact opposite.

Numerical Gaussian processes aim to capitalize on the long-standing
developments of classical methods in numerical analysis and revisits
machine leaning from a mathematical physics point of view.
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Physics Informed Learning Machines

Numerical Gaussian processes enable the construction of
data-efficient learning machines that can encode physical
conservation laws as structured prior information.

Numerical Gaussian processes are essentially physics informed
learning machines.
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Motivating Example
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Road Networks

Consider a 2× 2 junction as shown below.

1

2

3

4

Roads have length Li , i = 1,2,3,4.
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Road Networks
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Hyperbolic Conservation Law

The road traffic densities ρi (t , x) ∈ [0,1] satisfy the one-dimensional
hyperbolic conservation law

∂tρi + ∂x f (ρi ) = 0, on [0,T ]× [0,Li ].

Here, f (ρ) = ρ(1− ρ).
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Black Box Initial Conditions

The densities must satisfy the initial conditions

ρi (0, x) = ρ0
i (x),

where ρ0
i (x) are black-box functions. This means that ρ0

i (x) are
observable only through noisy measurements {x0

i ,ρ
0
i }.
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Introduction to Gaussian
Processes
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Gaussian Processes

A Gaussian process

f (x) ∼ GP(0, k(x , x ′; θ)),

is just a shorthand notation for[
f (x)
f (x ′)

]
∼ N (

[
0
0

]
,

[
k(x , x ; θ) k(x , x ′; θ)
k(x ′, x ; θ) k(x ′, x ′; θ)

]
.
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Squared Exponential Covariance Function

A typical example for the kernel k(x , x ′; θ) is the squared exponential
covariance function, i.e.,

k(x , x ′; θ) = γ2 exp
(
−1

2
w2(x − x ′)2

)
,

where θ = (γ,w) are the hyper-parameters of the kernel.
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Training

Given a dataset {x ,y} of size N, the hyper-parameters θ and the
noise variance parameter σ2 can be trained by minimizing the
negative log marginal likelihood

NLML(θ, σ) =
1
2

yT K−1y +
1
2

log |K |+ N
2

log(2π),

resulting from
y ∼ N (0,K ),

where K = k(x ,x ; θ) + σ2I .
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Prediction

Having trained the hyper-parameters and parameters of the model,
one can use the posterior distribution

f (x∗)|y ∼ N (k(x∗,x)K−1y , k(x∗, x∗)− k(x∗,x)K−1k(x , x∗)).

to make predictions at a new test point x∗.

This is obtained by writing the joint distribution[
f (x∗)

y

]
∼ N (

[
0
0

]
,

[
k(x∗,x) k(x∗,x)
k(x , x∗) K

]
.
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Example
Code
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https://github.com/maziarraissi/TutorialGP/tree/master/GP
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Numerical Gaussian
Processes
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Numerical Gaussian Processes
Definition

Numerical Gaussian processes are Gaussian processes with
covariance functions resulting from temporal discretization of
time-dependent partial differential equations.
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Example: Burgers’ Equation

Burgers’ equation is a fundamental non-linear partial differential
equation arising in various areas of applied mathematics, including
fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow.

In one space dimension the Burgers’ equation reads as

ut + uux = νuxx ,

along with Dirichlet boundary conditions u(t ,−1) = u(t ,1) = 0, where
u(t , x) denotes the unknown solution and ν = 0.01/π is a viscosity
parameter.
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Problem Setup
Burgers’ Equation

Let us assume that all we observe are noisy measurements

{x0,u0}

of the black-box initial function u(0, x).

Given such measurements, we would like to solve the Burgers’
equation while propagating through time the uncertainty associated
with the noisy initial data.

Maziar Raissi | Numerical Gaussian Processes



17

Burgers’ equation
Movie Code
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Burgers’ equation

It is remarkable that the proposed methodology can effectively
propagate an infinite collection of correlated Gaussian random
variables (i.e., a Gaussian process) through the complex nonlinear
dynamics of the Burgers’ equation.
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Backward Euler
Burgers’ Equation

Let us apply the backward Euler scheme to the Burgers’ equation.
This can be written as

un + ∆tun d
dx

un − ν∆t
d2

dx2 un = un−1.
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Backward Euler
Burgers’ Equation

Let us apply the backward Euler scheme to the Burgers’ equation.
This can be written as

un + ∆tµn−1 d
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Prior Assumption
Burger’s Equation

Let us make the prior assumption that

un(x) ∼ GP(0, k(x , x ′; θ)),

is a Gaussian process with a neural network covariance function

k(x , x ′; θ) =
2
π

sin−1

 2(σ2
0 + σ2xx ′)√

(1 + 2
(
σ2

0 + σ2x2)
)

(1 + 2
(
σ2

0 + σ2x ′2)
)
 ,

where θ =
(
σ2

0 , σ
2
)

denotes the hyper-parameters.
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Numerical Gaussian Process
Burgers’ Equation – Backward Euler

This enables us to obtain the following Numerical Gaussian Process[
un

un−1

]
∼ GP

(
0,

[
kn,n

u,u kn,n−1
u,u

kn−1,n−1
u,u

])
.
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Kernels
Burgers’ Equation – Backward Euler

The covariance functions for the Burgers’ equation example are given
by kn,n

u,u = k ,

kn,n−1
u,u = k + ∆tµn−1(x ′)

d
dx ′

k − ν∆t
d2

dx ′2
k .

Compare this with

un + ∆tµn−1 d
dx

un − ν∆t
d2

dx2 un = un−1.
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Kernels
Burgers’ Equation – Backward Euler

kn−1,n−1
u,u = k + ∆tµn−1(x ′)

d
dx ′

k − ν∆t
d2

dx ′2
k ,

+ ∆tµn−1(x)
d
dx

k + ∆t2µn−1(x)µn−1(x ′)
d
dx

d
dx ′

k

− ν∆t2µn−1(x)
d
dx

d2

dx ′2
k − ν∆t

d2

dx2 k

− ν∆t2µn−1(x ′)
d2

dx2
d

dx ′
k + ν2∆t2 d2

dx2
d2

dx ′2
k .
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Training
Burgers’ Equation – Backward Euler

The hyper-parameters θ and the noise parameters σ2
n , σ

2
n−1 can be

trained by employing the Negative Log Marginal Likelihood resulting
from [

un
b

un−1

]
∼ N (0,K ) ,

where {xn
b ,u

n
b} are the (noisy) data on the boundary and

{xn−1,un−1} are artificially generated data. Here,

K =

[
kn,n

u,u (xn
b ,x

n
b ; θ) + σ2

n I kn,n−1
u,u (xn

b ,x
n−1; θ)

kn−1,n
u,u (xn−1,xn

b ; θ) kn,n−1
u,u (xn−1,xn−1; θ) + σ2

n−1I

]
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Prediction & Propagating Uncertainty
Burgers’ Equation – Backward Euler

In order to predict un(xn
∗ ) at a new test point xn

∗ , we use the following
conditional distribution

un(xn
∗ ) | un

b ∼ N (µn(xn
∗ ),Σn,n(xn

∗ , x
n
∗ )) ,

where

µn(xn
∗ ) = qT K−1

[
un

b
µn−1

]
,

and

Σn,n(xn
∗ , x

n
∗ ) = kn,n

u,u (xn
∗ , x

n
∗ )− qT K−1q+qT K−1

[
0 0
0 Σn−1,n−1

]
K−1q.

Here, qT =
[
kn,n

u,u (xn
∗ ,xn

b ) kn,n−1
u,u (xn

∗ ,xn−1)
]
.
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Artificial data
Burgers’ Equation – Backward Euler

Now, one can use the resulting posterior distribution to obtain the
artificially generated data {xn,un} for the next time step with

un ∼ N (µn,Σn,n) .

Here, µn = µn(xn) and Σn,n = Σn,n(xn,xn).
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Noiseless data
Movie Code
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General Framework
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Numerical Gaussian Processes

It must be emphasized that numerical Gaussian processes, by
construction, are designed to deal with cases where:

I (1) all we observe is noisy data on black-box initial conditions,
and

I (2) we are interested in quantifying the uncertainty associated
with such noisy data in our solutions to time-dependent partial
differential equations.
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General Framework
Numerical Gaussian Processes

Let us consider linear partial differential equations of the form

ut = Lxu, x ∈ Ω, t ∈ [0,T ],

where Lx is a linear operator and u(t , x) denotes the latent solution.
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Linear Multi-step Methods
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Linear Multi-step Methods
Trapezoidal Rule

The trapezoidal time-stepping scheme can be written as

un − 1
2

∆tLxun = un−1 +
1
2

∆tLxun−1
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Linear Multi-step Methods
Trapezoidal Rule

The trapezoidal time-stepping scheme can be written as

un − 1
2

∆tLxun =: un−1/2 := un−1 +
1
2

∆tLxun−1

Maziar Raissi | Numerical Gaussian Processes



33

Numerical Gaussian Process
Trapezoidal Rule

By assuming
un−1/2(x) ∼ GP(0, k(x , x ′; θ)),

we can capture the entire structure of the trapezoidal rule in the
resulting joint distribution of un and un−1.
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Runge-Kutta Methods
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Runge-Kutta Methods
Trapezoidal Rule

The trapezoidal time-stepping scheme can be written as

un = un−1 +
1
2

∆tLxun−1 +
1
2

∆tLxun

un = un.
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Runge-Kutta Methods
Trapezoidal Rule

The trapezoidal time-stepping scheme can be written as

un
2 = un−1 +

1
2

∆tLxun−1 +
1
2

∆tLxun

un
1 = un.
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Numerical Gaussian Process
Trapezoidal Rule – Runge-Kutta Methods

By assuming

un(x) ∼ GP(0, kn,n(x , x ′; θn)),

un−1(x) ∼ GP(0, kn+1,n+1(x , x ′; θn+1)),

we can capture the entire structure of the trapezoidal rule in the
resulting joint distribution of un, un−1, un

2 , and un
1 . Here,

un
2 = un

1 = un.
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Experiments
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Wave Equation – Trapezoidal Rule
Movie Code
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Advection Equation – Gauss-Legendre
Movie Code
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Heat Equation – Trapezoidal Rule
Movie Code
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39

Navier-Stokes Equations
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Navier-Stokes Equations in 2D

Let us consider the Navier-Stokes equations in 2D given explicitly by

ut + uux + vuy = −px +
1

Re
(uxx + uyy ),

vt + uvx + vvy = −py +
1

Re
(vxx + vyy ),

where the unknowns are the 2-dimensional velocity field
(u(t , x , y), v(t , x , y)) and the pressure p(t , x , y). Here, Re denotes
the Reynolds number.
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Continuity Equation

Solutions to the Navier-Stokes equations are searched in the set of
divergence-free functions; i.e.,

ux + vy = 0.

This extra equation is the continuity equation for incompressible fluids
that describes the conservation of mass of the fluid.
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Backward Euler

Applying the backward Euler time stepping scheme to the
Navier-Stokes equations we obtain

un + ∆tun−1un
x + ∆tvn−1un

y + ∆tpn
x −

∆t
Re

(un
xx + un

yy ) = un−1,

vn + ∆tun−1vn
x + ∆tvn−1vn

y + ∆tpn
y −

∆t
Re

(vn
xx + vn

yy ) = vn−1,

where un(x , y) = u(tn, x , y).
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Divergence Free

We make the assumption that

un = ψn
y , vn = −ψn

x ,

for some latent function ψn(x , y). Under this assumption, the
continuity equation will be automatically satisfied. We proceed by
placing a Gaussian process prior on

ψn(x , y) ∼ GP (0, k((x , y), (x ′, y ′); θ)) ,

where θ are the hyper-parameters of the kernel k((x , y), (x ′, y ′); θ).
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Divergence Free Prior

This will result in the following multi-output Gaussian process[
un

vn

]
∼ GP

(
0,
[
kn,n

u,u kn,n
u,v

kn,n
v ,u kn,n

v ,v

])
,

where

kn,n
u,u =

∂

∂y
∂

∂y ′
k , kn,n

u,v = − ∂

∂y
∂

∂x ′
k ,

kn,n
v ,u = − ∂

∂x
∂

∂y ′
k , kn,n

v ,v =
∂

∂x
∂

∂x ′
k .

Any samples generated from this multi-output Gaussian process will
satisfy the continuity equation.
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Pressure

Moreover, independent from ψn(x , y), we will place a Gaussian
process prior on pn(x , y); i.e.,

pn(x , y) ∼ GP(0, kn,n
p,p ((x , y), (x ′, y ′); θp)).
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Numerical Gaussian Processes
Navier-Stokes equations

This will allow us to obtain the following numerical Gaussian process
encoding the structure of the Navier-Stokes equations and the
backward Euler time stepping scheme in its kernels; i.e.,

un

vn

pn

un−1

vn−1

 ∼ GP
0,


kn,n

u,u kn,n
u,v 0 kn,n−1

u,u kn,n−1
u,v

kn,n
v ,v 0 kn,n−1

v ,u kn,n−1
v ,v

kn,n
p,p kn,n−1

p,u kn,n−1
p,v

kn−1,n−1
u,u kn−1,n−1

u,v

kn−1,n−1
v ,v



 .
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Taylor-Green Vortex

0 1 2 3 4 5 6
x

0

1

2

3

4

5

6

y
Time: 1.000000, u error: 2.896727e-02, v error: 2.736063e-02
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Concluding Remarks

We have presented a novel machine learning framework for encoding
physical laws described by partial differential equations into Gaussian
process priors for nonparametric Bayesian regression.

The proposed algorithms can be used to infer solutions to
time-dependent and nonlinear partial differential equations, and
effectively quantify and propagate uncertainty due to noisy initial or
boundary data.
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